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The search for equations of state capable of describing accurately the properties 
of liquids and dense gases has been long and extensive. The literature abounds 
with examples of equations of widely varying complexity and having from two 
to eight disposable parameters. That this should be so is an inevitable conse- 
quence of the need of chemists and chemical engineers for a reliable basis for the 
calculation of thermodynamic data of great economic importance. It is, however, 
unfortunate that in some cases the desire to improve agreement with experi- 
mental data has rendered the physical basis of the equations less clear. Recent 
theoretical developments in the theory of dense fluids have shown the importance 
of a firm physical basis and have, perhaps surprisingly, led to a revival of interest 
in one of the oldest and surely the best known of such models, that of van der 
Waals. 

The appearance, in 1873, of the dissertation ‘On the continuity of the gas and 
liquid phases’ by J. D. van der Waalsl in which the equation of state 
[P + a (N/Y)’] [V  - Nb] = NkT 

was introduced provoked considerable discussion amongst such distinguished 
scientists as Maxwell and Lord Rayleigh.’ The columns of ‘Nature’ in the 
following two decades carried several letters in which the merits and basis of 
the equation were discussed. This was perhaps not surprising for it has been 
remarked, ‘the results of van der Waals do not appear to be due to any exact 
mathematical development of his physical ideas, but rather, as some German 
writers have commented, to in~piration.’~ The resort to inspiration was not 
universally acceptable as may be seen from Maxwell’s review of the dis~ertation.~ 

It was, however, a necessary procedure in view of the complexity of the problem, 
and in the light of contemporary knowledge. Before considering the nature of 
van der Waals’ approach it will be useful to consider in general terms the basic 
difficulties involved in any attempt to describe the properties of matter in terms 
of molecular behaviour. 

1 J. D. van der Waals, Dissertation, Leiden 1873; English translation, Threlfall and Adair, 
Physical Memoirs, 1890, 1, 333. 

An extensive list of references may be found in J. R. Partington, ‘An Advanced Treatise on 
Physical Chemistry’, Longmans, Green and Co., London, 1949, vol. 1, 660. 

F. G. Keyes and W. A. Felsing, J. Amer. Chem. SOC., 1919, 41, 589. 
* J. C. Maxwell, Nature, 1874, 10, 477. 
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1 Intermolecular Forces and Structure 
There are two essentially different aspects of this problem which must be con- 
sidered. In the first place, the nature of intermolecular interactions must be 
understood. For an isolated pair of spherically symmetric molecules the inter- 
molecular potential energy is a function of the separation of the molecular 
centres which may be represented as u(r), and has the approximate form illus- 
trated in Figure 1. For non-spherical molecules the potential energy depends 
also on the relative orientation of the molecules, but this discussion will not be 
concerned with such cases. Theforces between the molecules may be obtained 
from the gradient of the potential energy curve, and we see from Figure 1 that 
for small separations the forces are repulsive, and for larger separations they are 
attractive. 
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Figure 1 An intermolecular pair potential energy function, u(r), and a typical liquid radial 
distribution function g(r) 

Information about the pair potential curve may be derived from studies of 
the properties of dilute gases, although it is not in general possible to obtain the 
potential curve directly in this way. When studying the properties of solids, 
liquids, or dense gases it is often necessary to calculate the potential energy 
associated with several molecules which are simultaneously close together. A 
fairly accurate estimate may be obtained by assuming that the total energy of 
such an assembly is equal to the sum of the energies of each pair of molecules. 

One consequence of using this approximation is that a pair potential energy 
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function which gives satisfactory results for dense matter may not yield good 
results when applied to dilute gas properties. In particular, the Lennard-Jones 12 
-6 potential function 

u(r) = 4 E  [(;)I2 - (;)*I 
where u(o) = 0 and E is the depth of the potential well, appears to give rise to a 
satisfactory description of the liquid inert gases but is not appropriate to the 
dilute gas properties. 

The second problem which must be overcome is that of relating the bulk 
properties of a system to the properties of the constituent molecules. For this 
we use the methods of statistical mechanics. In general, we may calculate the 
thermodynamic properties of a system provided that we know both the appro- 
priate potential energy function and the structure of the system.6 It is a fairly 
easy matter to visualise the nature of a solid or dilute gas, but the liquid and 
dense gas states differ from these cases in that no simple model is available to 
describe their structures. Although the density of a liquid may approach that of 
a solid, the molecules are not localised and there is no regular lattice. The 
structure of a liquid or dense gas is best described in terms of molecular dis- 
tribution functions, the most important of which, the pair distribution function, 
g(r) ,  defines the number density of molecular centres at a distance r from the 
centre of a given molecule. When N molecules are present in a total volume, V, 
the number of molecular centres in a volume element of size 4nr2dr at a distance 
r from the reference molecule is defined as 47rr2(N/ V)g(r)dr, and the total number 
of molecular pairs separated by a distance r is then given by 4nr2N2g(r)dr/2V. 
The mean number density of the fluid is N / V  and g(r), which is in general a 
function of both temperature and density, thus defines the microscopic devia- 
tions from the mean density due to the presence of neighbouring molecules. 
Values of g(r) may be obtained experimentally from X-ray diffraction studies. 
A typical pair distribution function for a liquid is shown in Figure 1. It is seen 
that at separations less than the collision diameter, 0, g(r) is very small. This is 
due to the effect of repulsive intermolecular forces, which effectively prevent 
molecules from approaching to very short distances. At slightly greater values 
of r the distribution function rises to a maximum which indicates that the likeli- 
hood of finding a molecuk at these separations is considerably greater (two or 
three times) than would be expected on the basis of a completely uniform dis- 
tribution [for which g(r) = 11. At still greater separations, the value of g(v) 
stays fairly close to the value of 1 appropriate to a uniform distribution, although 
small oscillations (which decrease with increasing r )  occur as a result chiefly of 
packing requirements in the second and subsequent shells of neighbours. This 
overall situation is commonly summarised in the statement that liquids possess 
short-range order combined with long-range disorder, and it is this combination 
which causes considerable difficulty in the description of the liquid state. 

J. S. Rowlinson, ‘The Structure of Liquids’ in ‘Essays in Chemistry’, ed. J. N. Bradley, 
Academic Press, London, 1970, 1, 1 .  
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If the pair distribution function is known, a rather obvious route to some of 
the bulk thermodynamic properties is available. Since the distribution function 
enables us to calculate the number of molecular pairs having a given separation, 
r, then knowing the potential energy function U(Y) the calculation of that part 
of the internal energy which is derived from the intermolecular forces follows 
directly. 

U’ = jm4nr2g(r).  u(r)dr 
2v 0 

(3) 

For monatomic systems, the total internal energy is the sum of U’ (the con- 
figurational internal energy) and the ideal gas translational energy. 
U = U’ f 3 NkTI2 
The calculation of the pressure is less readily performed. It may be carried 

out by the use of a rigorous theorem, the virial theorem, developed in 1870 by 
Clausius, by means of which the average kinetic energy of a system may be 
related to its average potential energy. Using this theorem the following equation 
may be derived. 

(4) 

du co 
PV = NkT - 5 4nr2g(r)rdr . dr 

6v 0 
( 5 )  

It is evident that if the intermolecular force, - du/dr, is zero for all values of Y 

the ideal gas equation of state is recovered. The last term in equation (5 )  thus 
represents the corrections to the ideal gas equation resulting from intermolecular 
forces. It is possible to establish the overall effect of these forces by considering 
the deviations from ideal gas behaviour. For gases at low to moderate pressures 
and at temperatures below the Boyle temperature, the observed values of PV 
are less than NkT, and the predominant interaction between the molecules is 
thus an attractive force. In liquids, PV exceeds NkT, and the more important 
factor in this case is seen to be the repulsive forces. 

2 The van der Waals Model 
At the time of van der Waals’ original work, little was known of the details of 
either the structure of liquids or of intermolecular forces. The formal relation- 
ship between the pressure and intermolecular forces had just been derived, but 
the information needed to make even a semi-quantitative evaluation of the 
terms involved was not available. The essence of van der Waals’ derivation was 
thus the introduction of judicious approximations based on a physically reason- 
able model. 

The most important approximation introduced was the separation of the 
effects of intermolecular repulsion and attraction. van der Waals believed that 
there were two essentially distinct corrections to the ideal gas laws, one resulting 
from the tendency of molecules to attract one another at moderate separations, 
and the other a consequence of the finite size of the molecules, associated with 
the short-range repulsive forces. He made the additional important assumption 
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that the net force on a molecule in the body of a dense fluid resulting from the 
summed attractions of all its neighbours was zero. Thus, although the potential 
energy of the molecule was lowered as a result of the intermolecular energy, the 
overalI potential field in which the molecule moved was regarded as essentially 
uniform. Since there were no potential gradients, the resultant force was zero. 
However, when a molecule was close to the walls of the containing vessel, its 
neighbours could no longer be symmetrically disposed about it, and the molecule 
was subjected to a resultant force directed away from the wall. The velocity of 
the molecule as it approached the wall was therefore reduced to a value some- 
what less than its simple kinetic theory value, and the observed pressure was 
therefore less than the ideal gas value. van der Waals estimated the correction 
in a manner described by Maxwell4 as ‘ingenious and on the whole satisfactory’ 
and suggested that the term P + a(N/ V)2  should replace the pressure in the ideal 
gas equation of state. The empirical constant a was a measure of the strength of 
the attractive forces and was assumed to be independent of temperature. van der 
Waals treated the repulsive forces by considering each molecule to have a hard 
core of diameter 0, so that it was not possible for the centres of a pair of mole- 
cules to approach to a distance less than 0. Thus each molecule was surrounded 
by a sphere of radius (T from which the centres of all other molecules were 
excluded. van der Waals attempted to calculate the extent to which the total 
volume V available to the molecular centres was reduced in this way, and con- 
cluded that the available volume was V - Nb, where b = 2ro3/3, four times 
the volume of a hard core. He admitted that this was an approximation, valid 
only at low densities. Replacing the total volume by this estimate of the available 
volume, we obtain van der Waals’ equation of state in its familiar form 

[P  + a(N/V)2] [ V - Nb] = NkT 

which may be written alternatively 

p= - NkT - a ( ; ) 2  
V -  Nb (7) 

in which the effect of each correction term on the pressure is more clearly shown. 

A. The Generalised van der Waals Equations.-It is important to recognise that 
the van der Waals equation is just one of a general class of equations of state3 
which may be represented 

where /3 and a are functions of the density, N/V, but are temperature indepen- 
dent. We shall describe equations of this type as generalised van der Waals 
equations. The function 18 represents the effects of molecular size and a relates 
to the effects of intermolecular attraction. The specific van der Waals form is 
obtained by the use of the approximate relations 
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V 
V -  Nb 

p = -  and a = a (9) 

We must distinguish between results following from the general form of 
equation (8) and those dependent on particular choices for the functions a 
and 18. 

An interesting comparison may be made between equation (8) and the thermo- 
dynamic equation of state 

p = T ( ; ) v  - (yT 
It is immediately seen that the generalised van der Waals equation requires 

that the thermal pressure coefficient, ( $)v , be a function only of the molar 

volume, and consequently that at constant volume the pressure should increase 
linearly with temperature. For a wide range of liquids the observed behaviour 
closely approximates to this.s 

Perhaps the most important consequence of equation (8) is that the entropy 
is determined solely by the term p ( N / V )  and is thus governed only by considera- 
tions of molecular size. The structure, and hence the disorder, of the fluid is 
therefore independent of the attractive forces, and is identical with that of a 
system of molecules having the same repulsive forces, but no intermolecular 
attraction. This result is fundamental to the generalised van der Waals equations 
and greatly simplifies the treatment of attractive forces. If the structure due to 
repulsive interactions can be determined, the thermodynamic properties of any 
fluid with an arbitrary attractive potential, u(r), may be readily calculated. 
Defining properties of the fluid without attractive forces by the superscript 0, 

we may write 

u=uo+- N 2  5" 4nr2gO(r). u(r)dr 
2v 0 

and since S = SO, the Helmholtz free energy is given by 
03 

A = A0 + 5 4m2go(r)u(r)dr 2v 0 

If, following van der Waals, we associate the fluid without attractive forces with 
the hard sphere fluid, these equations permit us to calculate the properties of 
any fluid provided the distribution function for hard sphere systems is known. 

B. Comparison with Experimental Data.-As is well known the original van der 
Waals equation gives a qualitatively correct description of the critical properties 
of fluids. The critical properties may be expressed in terms of the constants a 

* J. S. Rowlinson, 'Liquids and Liquid Mixtures', Butterworths Scientific Publications, 
London, 2nd edn., 1969. 
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and b of equations (6) and (7), and experimental values of two of the critical 
temperature, pressure, and volume may be used to derive characteristic values 
of these constants for specific substances. Below the critical temperature the 
van der Waals isotherms do not have the experimentally observed horizontal 
portion in the two-phase region, but are sinuous curves. These may be re- 
interpreted using the equal areas rule of Maxwell. A horizontal line is drawn 
intersecting the isotherm at three points and defining regions of equal area 
above and below the line. The extreme intersections correspond to liquid and 
vapour states of equal free energy and the modified isotherms then give a de- 
scription of a liquid in equilibrium with its vapour. To this extent it may be said 
that van der Waals achieved his objective. However, a closer study of the pre- 
dicted critical behaviour shows considerable disagreement with the experimental 
results. In particular, the form of the critical isotherm and of the coexistence 
curve near to the critical point are badly at variance with the data. This dis- 
agreement appears to be of a fundamental nature, and recent theoretical studies’ 
have shown that correlations resulting from short-range attractive forces are 
of major importance in determining properties in the critical region. The van der 
Waals model, with its assumption of a uniform attractive potential field, cannot 
reproduce this behaviour correctly. 

The use of van der Waals equation to calculate PVT data for simple systems 
leads to results which are qualitatively in agreement with experimental values, 
but which are inadequate for accurate work. One important factor is that the 
pressure calculated from equation (7) is the difference of two terms of similar 
size and a relatively small error in either term may have a large effect on the 
final result. This cancellation does not always occur in the estimation of other 
properties, such as the internal energy, for which the van der Waals theory is 
generally much more accurate. One apparently gross inadequacy of van der 
Waals equation is its failure to predict the existence of a solid phase. It is true 
that van der Waals was not attempting to account for the solid, but it does not 
seem an unreasonable expectation if the physical basis of the equation is sound. 

The origins of these discrepancies may best be investigated by considering 
separately the approximations used for the functions a and /3 of equation (9). 
The van der Waals approximation for a implies that the configurational energy 
of the fluid is a linear function of the density and is independent of temperature. 
Experimental values of the configurational energy of liquid argon may be 
obtained from known thermodynamic data, and reveal that this approximation 
is remarkably accurate. The only significant deviations occur near to the critical 
point. For other substances the detailed data needed for the calculation are not 
available. However, values of the van der Waals ‘constant’ a may be derived 
for a number of simple liquids. From equations (8), (9), and (10) we see that 

a = (5)’ (g) T 
B. Widom, Science, 1967, 157, 375. 
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For several simple liquids the values of a calculated using equation (13) and 
known experimental data are found to vary only slightly over the whole liquid 
range.6 These results suggest that the approximation for a is quite accurate and 
that the use of refined versions cannot be expected to improve significantly the 
overall quality of the equation of state. The function p describes the behaviour 
of molecules which have finite size but no attractive forces. They are thus 
regarded as hard spheres, and the equation 

PV V 
NkT-  V - Nb 
--- 

should reproduce the hard-sphere equation of state. Although the hard-sphere 
model is not a very realistic physical model for real molecules it has been ex- 
tensively studied in the development of theories of fluids, and the equation of 
state is well established. Equation (14) is not a good approximation to the true 
equation of state at other than very low densities. The explanation of this failure 
is that the excluded volume is not simply proportional to the number of molecules 
in a given volume. The true excluded volume is less than the van der Waals value, 
because the ‘excluded volume per molecule’ relates to the exclusion of a molecular 
centre, and it is possible for the excluded volumes to overlap to a certain extent, 
in such a way that the volume excluded by a pair of molecules which are close 
together is less than the sum of the two separate excluded volumes per molecule. 
The van der Waals approximation thus overestimates the size of the correction 
for the molecular size, and the pressures calculated from equation (14) are 
greater than the true values. The exact hard-sphere equation of state is compared 
with the van der Waals form in Figure 2, and it is seen that although the approxi- 
mate form is correct at low densities it is badly in error at higher densities, and 
indeed gives rise to an infinite pressure at about one-third of the close packed 
density. It is largely in the treatment of the effects of molecular size that the van 
der Waals equation is inadequate, and we shall now consider in more detail the 
properties of the hard-sphere fluid. 

3 The Hard-sphere Fluid 
A great deal of work has been done in the past thirty years on the development 
of theories of fluids expressed in terms of distribution functions. These theories 
provide a complete formal basis for the description of the liquid state, but it is 
not possible to calculate the values of the distribution functions from first 
principles. In order to obtain values of g(r) it is necessary to introduce approxi- 
mations into the theory. Much effort has been expended in attempts to devise 
satisfactory approximations, but in no case have completely satisfactory solu- 
tions been obtained. In order to test the various approximations, it is desirable 
to compare the theoretical results with those found experimentally from X-ray 
diffraction studies. However, a direct comparison is not simple, since a know- 
ledge of the pair potential energy function is a prerequisite for the calculation 
of distribution functions and our present knowledge of these functions is in- 
complete. To some extent these problems may be overcome by the use of 
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Figure 2 The hard-sphere equation of state. The solid curve shows the results of computer 
studies and includes the solid-fluid phase transition. The dashed curves show the approximate 
equations of state based on the van der Waals (equation 14) and Percus-Yevick (equation 15) 
approximations 
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simulation studies. By use of the Monte Carlo and Molecular Dynamics methods 
with fast electronic computers,8 it is possible to study the behaviour of an 
imaginary model fluid in which the potential energy function is specified by the 
investigator. The results obtained are essentially exact, and are commonly 
regarded as pseudo-experimental data for the purpose of comparison with 
theory. Because of the considerable simplifications afforded by its use, the hard 
sphere model has been very extensively studied in this way, and the equation of 
state has been firmly established. The most striking result of these simulation 
studies was the discovery0 that at certain densities the system may exist in two 
different states, one of which has the long-range order characteristic of a solid, 
and the other, which is associated with a higher pressure, having no long-range 
order. The latter is believed to correspond to a metastable fluid state, and the 
phenomenon is thought to be associated with a solid-fluid phase transition. 
Considerations of molecular size, without any attractive forces, thus lead to the 
existence of two states of matter. 

Some pair distribution functions have been derived from simulation studies, 
and may be compared with the predictions of the various approximate theories. 
In general however, comparisons have been made with the calculated equation 
of state, which is determined (for hard-sphere systems only) by the value of the 
pair distribution function at the point of contact, g(o). One theory in particular 
has been found to yield good solutions for the hard-sphere systems over the 
whole liquid range. This theory, due to Percus and Yevick,lo leads to an equation 
of state which may be written in the form 

Nb 
where 6 = - 

PV 1 + 6 + k "  
N k T -  (1 - b3 4v 
-- 

However, it does not predict the observed phase transition, and its application 
to systems having more realistic pair potentials is often difficult. 

It is now possible to replace the approximate hard-sphere term in the van der 
Waals equation by the exact result. Since the hard-sphere system can exist in 
both solid and fluid forms, and the simple van der Waals theory shows both 
the liquid and gaseous phases, this corrected equation may reasonably be 
expected to show the existence of all three possible states of matter, and this 
expectation is realised. One major failure of the van der Waals equation is 
therefore removed, and is shown to be a consequence of the inaccurate descrip- 
tion of the hard-sphere equation of state. 

4 Perturbation Theory 
We may now consider also the re-derivation of the term describing the effects 
of the attractive forces. van der Waals made the assumption that the distribu- 
tion of the molecules was uniform, i.e., that g(r) = 1 for all Y 3 CT. It is evident 
from Figure 1 that this is not a good approximation for values of r between 

* M. A. D. Fluendy and E. B. Smith, Quart. Rev., 1962,16, 241. 

lo J. K .  Percus and G. J. Yevick, Phq's. Rev., 1958,110, 1. 
B. J. Alder and T. E. Wainwright, J .  Chem. Phys., 1960, 33, 1439. 
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about CJ and 20, although it becomes better for larger separations. The van der 
Waals arguments will lead to a good approximation if the potential function is 
long ranged. In this case, the bulk of the configurational energy will arise from 
interactions between molecules which are far apart, and for which g(r) N 1. 
Indeed it has been shown by rigorous methods" that the van der Waals attractive 
term will arise as an exact result in the case of molecules which consist of a hard 
core together with an attractive energy term of infinite range and vanishingly 
small magnitude. 

However, we know that these conditions are not satisfied for real molecules 
and are led to consider an alternative approach to the problem. Zwanzig12 
showed that the hard-sphere fluid may be used as the basis of a perturbation 
expansion, the physical basis of which is that of the generalised van der Waals 
equation, namely that the geometrical distribution of real moleculm is deter- 
mined by the repulsive intermolecular forces and may be regarded as identical 
to that of a hard-sphere fluid of a suitably chosen density. The attractive forces 
act as a source of internal energy which maintains the high density of the liquid, 
but do not otherwise significantly affect the distribution of the molecules. 
The first-order perturbation theory leads to equation (12), when gO(r) is the 

pair distribution function of the hard sphere system and u(r) is the difference 
between the potential energy function of the perturbed system and the hard- 
sphere potential. It is possible to write formal expressions for the second-order 
perturbation contributions, but these involve higher order distribution func- 
tions about which very little is known. If only the first-order term is obtained 
the perturbation theory has the characteristics of the generalised van der Waals 
equation mentioned earlier. The neglect of higher order perturbation terms 
may be shown to be formally acceptable at high temperatures, and early applica- 
tions of the theory were concerned with the development of a high-temperature 
equation of state for dense gases. 

We have not so far considered the basis for the selection of the hard-sphere 
diameter. Since this value determines both the hard-sphere contribution to the 
pressure and also the size of the correction terms, it is evident that a reliable 
basis for its estimation is essential. It is possible to make a qualitative assessment 
of the hard-sphere diameter on the basis of simple physical arguments. The true 
pair potential rises rapidly as the separation of a pair of molecules is decreased 
from the collision diameter 0. The hard-sphere potential becomes infinite for pair 
separations less than its collision diameter, and such a situation has zero prob- 
ability. In real systems, the molecules may approach to separations less than o 
and their closest distance of approach will be reached when the potential energy 
is equal to the kinetic energy which was possessed at large separations. At 
higher temperatures the average kinetic energy is higher, and the average value 
of the distance of closest approach would be expected to be smaller. The effective 
hard-sphere diameter would thus be expected to decrease with rise in temperature. 

l1 M. Kac, G. E. Uhlenbeck, and P. C. Hemmer, J .  Math. Phys., 1963,4, 216. 
R. W. Zwanzig, J .  Chem. Phys., 1954,22, 1420. 
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In the earlier  calculation^^^ made using the first-order perturbation theory a 
rather arbitrary choice of hard-sphere diameter was made. Although the em- 
phasis in this work was on the development of a high-temperature equation of 
state for gases, the use of a Lennard-Jones 12-6 potential as the perturbing 
potential led to a reasonably good estimation of the critical temperature of the 
inert gases. The hard-sphere distribution functions used in this work were 
calculated from exact analytic expressions appropriate only to fairly low densities. 
With the development of the Percus-Yevick approximation reliable estimates of 
the hard-sphere distribution functions over a wide density range became avail- 
able, and further  calculation^^^ were made, again using the 1 2 - 6  potential. 
These calculations revealed the great sensitivity of the theory to the choice of 
the hard-sphere diameter, but after some slight adjustment of parameters, an 
equation of state was developed which was in good agreement with the data for 
gaseous argon at high densities. 

The applicability of the perturbation theory to liquids was demonstrated by 
Smith,15 who pointed out that the experimental data for many liquids were 
consistent with an equation of state of the form of equation (8) and showed that 
the function f i  could be derived from experimental thermal pressure coefficients 
and agreed closely with the hard-sphere equation of state. 

The most successful extension of the perturbation theories has been due to 
Barker and Henderson,16 who have considered both the choice of hard-sphere 
diameters and the development of approximate methods for the estimation of 
the second-order perturbation term. By a suitable definition of the perturbing 
intermolecular potential, these authors were able to develop a theory which 
dealt separately with the attractive forces and the slightly soft nature of the 
repulsive energy. The treatment of the repulsive forces was based on a method 
due to Rowl ins~n,~~ and provided a means of defining an effective hard-sphere 
diameter which was independent of density and decreased with increasing tem- 
perature. The first-order correction for the attractive forces was essentially that 
of Zwanzig, and in addition Barker and Henderson were able to approximate 
the second-order attractive term using accessible functions. By use of this theory, 
the equation of state was calculated for the Lennard-Jones potential, and the 
results compared with those obtained from Monte Carlo and Molecular 
Dynamics studies. These are shown in Figure 3. The agreement is seen to be 
excellent over a wide range of temperature and density, and this success may be 
seen as a strong justification of the basic validity of the approach. It seems that 
the effect of neglecting the higher order terms is negligible, except perhaps at the 
lowest temperature shown, which corresponds roughly to the triple point tem- 
perature of the inert gases. The critical constants obtained from this model are 
in excellent agreement with those obtained from computer studies. In addition, 

l3 E. B. Smith and B. J. Alder, J. Chem. Phys., 1959, 30, 1190. 
l4 H. L. Frisch, J. L. Katz, E. Praestgaard, and J.  L. Lebowitz, J.  Phys. Chem., 1966,70,2016. 
l5  E. B. Smith, J .  Chem. Phys., 1962, 36, 1404. 
l6 J. A. Barker and D. Henderson, J .  Chem. Educ., 1968,45,2; J. A.  Barker and D. Henderson, 
J .  Chem. Phys., 1967, 47, 4714. 
I 7 J .  S. Rowlinson, Mol. Ph,vs., 1964, 8, 107. 
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the densities and pressures of the coexisting gas and liquid phases were calculated 
using the Maxwell equal area rule, and the derived coexistence and vapour 
pressure curves were found to be in good agreement with the experimental data 
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Figure 3 The equation of state of aj?uid of Lennard-Jones molecules. The compressibility factor, 
PV/NkT, is shown as a function of the density at four values of the reduced temperature kTJE. 
The curves are based on the perturbation theory and are labelled with the value of the reduced 
temperature. The critical isotherm corresponds to a reduced temperature of ca. 1.35. The points 
show the results of computer calculations. (W. W .  Wood and F. R. Parker, J.  Chem. Phys., 
1957, 27, 720; 1. R.  Macdonald and K.  Singer, Discuss. Faraday SOC., 1967, 43,40; L. Verlet, 
Phys. Rev., 1967, 159, 98.) 
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for argon. We should note that this appears to be the first theory of liquids 
capable of describing the vapour pressure curve correctly, and may infer from 
this that the approach leads to an accurate description of the entropy of a liquid. 

5 Applications of the van der Waals Concepts 
It would be inappropriate to describe in detail the numerous applications of the 
van der Waals model. Instead three examples have been selected which emphasise 
the basic simplicity of this approach and the insight which it can provide. 

A. Phase Changes.-The identification of the entropy of a fluid with that of an 
appropriately chosen hard-sphere system provides a simple basis for calculating 
entropies of vaporisation and fusion. For example, the entropy of vaporisation 
of a fluid at the normal boiling point is equal to the difference between the 
entropy of the hard-sphere gas at one atmosphere pressure and that of the hard- 
sphere fluid at the liquid molar volume. This difference may be readily calculated 
if the hard-sphere equation of state is known. Yosim and Owens1* used the 
hard-sphere equation of state of equation (15) and took values of the collision 
diameters derived from studies of dilute gas properties. They were then able to 
calculate entropies of vaporisation for a large number of non-ionic liquids and 
obtained results which were in very good agreement with the experimental 
values in almost all cases. These authors also applied a similar approach to the 
calculation of entropies of fusion of the inert gases, and obtained results in fair 
agreement with experiment. 

An alternative approach to melting phenomena was investigated by Widom 
and Longuet-Higgins,l8 who used a generalised van der Waals equation consist- 
ing of the exact hard-sphere results, including the solid-fluid phase transition, 
and the original form of the function a. 

The use of this equation leads to isotherms which have a zig-zag portion in 
the density region near the hard-sphere melting transition. These may be re- 
interpreted using the Maxwell equal area rule and the equation then describes 
the temperature dependence of the melting density for a system of hard spheres 
immersed in a uniform potential field. Widom and Longuet-Higgins were able 
to establish the value of a/kT corresponding to the triple point, by using the 
criterion that the activities of the solid, liquid, and gas phases should be equal. 
They then evaluated such properties as the ratio of the liquid and solid molar 
volumes and the entropy of fusion at the triple point, and obtained values in 
good agreement with the experimental data for argon. These calculations were 
made without the introduction of any arbitrary parameters, and the success of 
this approach gives a striking confirmation of the validity of the physical model. 

S. J. Yosim and B. B. Owens, J .  Chem. Phys., 1963, 39, 2222. 
la H. C. Longuet-Higgins and B. Widom, Mol. Phys., 1964, 8, 549. 
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B. Thermodynamic Properties of Mixtures.-Until recently the study of liquid 
mixtures has been dominated by a number of related theories which were based 
on the assumption that the distribution of different types of molecule within the 
liquid was random. The possibility of preferential packing arrangements result- 
ing from differences in the intermolecular forces associated with the various types 
of pair interactions were neglected in the simplest forms of these theories. 
Although they have been successfully applied to simple mixtures of components 
similar in molecular size, the application of these theories to mixtures in which 
there is a large size difference has not proved satisfactory. In such cases large 
positive values of the excess free energy GE are predicted, and these are not 
observed experimentally. Mixture theories based on the van der Waals concepts 
have proved much better able to take account of the effects of size differences 
and seem likely to provide the basis for future work in this field. 

The van der Waals picture of a liquid mixture is again based on the assump- 
tion that the structure is determined largely by the repulsive intermolecular 
forces and may be closely approximated by the use of a hard-sphere model. 
However, the different species in a mixture will in general have different repulsive 
forces and will be represented by hard spheres of different sizes. The overall 
picture is thus of a hard-sphere mixture immersed in a uniform field due to the 
attractive intermolecular forces. 

There have been several computer studies20 of the properties of hard-sphere 
mixtures and the Percus-Yevick theory has also been successfully applied to 
these systems.21 Calculations of the thermodynamic mixing functions22 have 
shown that hard spheres mix at constant pressure with a small decrease in 
volume and a small negative excess free energy GE. The decrease in volume occurs 
because it is possible to pack spheres of different sizes more efficiently than those 
of a single size, and the structure of the mixture is therefore rather different from 
that of a pure hard-sphere fluid. The van der Waals theory suggests that this 
structural change will also occur when real molecules are mixed and it now 
appears that it was the failure of earlier theories to take account of this effect 
which was responsible for their inability to describe mixtures whose components 
differed significantly in size. 

Two different methods of applying the van der WaaIs model to mixtures 
have been described. Snider and H e r r i n g t ~ n ~ ~  used a generalised form of equa- 
tion (16) to describe the equation of state of a mixture. Leland, Rowlinson, and 
Sather24 avoided the choice of an explicit equation of state by using an approach 
based on the principle of corresponding states which gave accurate results when 
applied to hard sphere mixtures. In both cases the calculated values of the 
thermodynamic properties of simple binary mixtures were in considerably better 
agreement with the experimental data than those based on earlier theories. 

2o E. B. Smith and K. R. Lee, Trans. Faraday SOC., 1963, 59, 1535; B. J. Alder, J. Chem. 
Phys., 1964,40,2724. 
21 J. L. Lebowitz, Phys. Rev., 1964, 133, A895. 
22 J. L. Lebowitz and J. S. Rowlinson, J.  Chem. Phys., 1964,41, 133. 
23 N. S. Snider and T. M. Herrington, J .  Chem. Phys., 1967,47, 2248. 
24 T. W. Leland, J. S. Rowlinson, and G. A. Sather, Trans. Faraday SOC., 1968, 64, 1447. 
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C. Transport Properties of Dense Gases and Liquids.-Although the dilute gas 
transport properties of simple substances may generally be calculated, the 
extension to higher densities is very complex, owing to the possibility of many- 
body collisions. For hard spheres this problem does not arise since the potential 
is not long ranged and the theoretical treatment is less difficult. E n ~ k o g ~ ~  deve- 
loped an approximate theory in which it was assumed that a dense hard-sphere 
system behaves like a dilute hard-sphere system, with the modification that the 
collision rate is higher in the dense system. If the ratio of the collision rate at 
high density to that at low density is Y, the Enskog theory gives values of the 
transport properties of the dense hard-sphere fluids in terms of their low density 
values and the factor Y. Values of Y may be obtained from the hard-sphere 
equation of state and the transport properties of dense hard-sphere systems may 
then be calculated, using the known results for the low density coefficients. 

The extension of these results to real molecules is based on the van der Waals 
concept of a uniform potential field in dense fluids. If this were exact, molecules 
would travel in straight lines between collisions. Although this is undoubtedly 
an approximation the successful application of the van der Waals model to 
equilibrium properties has suggested that the true situation is probably close to 
this. In order to use the Enskog equations for real systems, effective hard-sphere 
diameters for the molecules are needed. Dymond and Alderz6 obtained these 
from experimental compressibility data and calculated the coefficients of viscosity 
and thermal conductivity for the heavier inert gases at several temperatures and 
densities above the critical, obtaining results in good agreement with the avail- 
able experimental data. 

This approach has also been successfully applied to the calculation of the 
viscosity of liquid mixtures of argon and kryptonz7 and to the study of gaseous 
diffusion in liquids.28 

6 Conclusion 
Almost a century has passed since the van der Waals equation of state was first 
proposed. After a period in which it was extensively used in early studies of 
phase equilibria and the properties of liquid mixtures it passed into disuse as its 
inadequacies were revealed. Only in recent years has it become apparent that 
these were due to an inadequate treatment of the physical model on which the 
equation was based rather than to weaknesses in the model itself. There is now 
much evidence that the structure of a liquid or dense gas is determined almost 
entirely by repulsive intermolecular forces and may be accurately reproduced 
by the use of a hard-sphere model. The attractive intermolecular forces give rise 
to an essentially uniform potential field and maintain the high density. Equations 
of state which accurately embody this picture of a liquid have proved remarkably 

26 See S. Chapman and T. G. Cowling, ‘The Mathematical Theory of Non-Uniform Gases’, 
Cambridge University Press, Cambridge, 2nd edn. 
26 J .  H. Dymond and B. J. Alder, J .  Chem. Phys., 1966, 45, 2061. 
27 N. Jhunjhunwala, J. P. Boon, H. L. Frisch, and J. L. Lebowitz, Physicu, 1969,41, 536. 
28 E. McLaughlin, J. Chem. Phys., 1969,50, 1254. 
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accurate and the use of this model has led to important advances in a number 
of fields. 

The author wishes to thank Professor J. S. Rowlinson and Dr. E. B. Smith for 
their encouragement and helpful advice. 
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